Rep1p negatively regulating MDR1 efflux pump involved in drug resistance in Candida albicans.
نویسندگان
چکیده
Overexpression of MDR1 efflux pump is a major mechanism contributing to drug resistance in Candida albicans, the most common human fungal pathogen. To elucidate the regulatory pathway of drug resistance, we have identified a negative regulator of MDR1 and named it Regulator of Efflux Pump 1 (REP1). Overexpression of REP1 in Saccharomyces cerevisiae increased susceptibility to fluconazole. Furthermore, null mutations on REP1 decreased the susceptibility to antifungal drugs in C. albicans resulting from increased expression of MDR1 mRNA. Hence, Rep1p is involved in drug resistance by negatively regulating MDR1 in C. albicans.
منابع مشابه
The Transcription Factor Mrr1p Controls Expression of the MDR1 Efflux Pump and Mediates Multidrug Resistance in Candida albicans
Constitutive overexpression of the MDR1 (multidrug resistance) gene, which encodes a multidrug efflux pump of the major facilitator superfamily, is a frequent cause of resistance to fluconazole and other toxic compounds in clinical Candida albicans strains, but the mechanism of MDR1 upregulation has not been resolved. By genome-wide gene expression analysis we have identified a zinc cluster tra...
متن کاملRegulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 in Candida albicans.
Constitutive overexpression of the Mdr1 efflux pump is an important mechanism of acquired drug resistance in the yeast Candida albicans. The zinc cluster transcription factor Mrr1 is a central regulator of MDR1 expression, but other transcription factors have also been implicated in MDR1 regulation. To better understand how MDR1-mediated drug resistance is achieved in this fungal pathogen, we s...
متن کاملQuinone derivatives isolated from the endolichenic fungus Phialocephala fortinii are Mdr1 modulators that combat azole resistance in Candida albicans
One of the main azole-resistance mechanisms in Candida pathogens is the upregulation of drug efflux pumps, which compromises the efficacy of azoles and results in treatment failure. The combination of azole-antifungal agents with efflux pump inhibitors represents a promising strategy to combat fungal infection. High-throughput screening of 150 extracts obtained from endolichenic fungal cultures...
متن کاملFrequency of PGP and MRPA efflux pump genes in drug resistance in clinical isolates of Leishmania tropica and L. major
This study aimed to identify PGP and MRPA genes in clinical isolates of Leishmania. The genes of pgpa (MRPA) and mdr1 (PGP) are involved in the drug resistance, their products act as dependent transporters of ATP (ABC Transporter) in the reflux of drugs from the cytosol to the outer space of the cell. Hence, 40 volunteers with leishmaniasis were randomly selected. Firstly, Amastigotes were exam...
متن کاملSAGA/ADA complex subunit Ada2 is required for Cap1- but not Mrr1-mediated upregulation of the Candida albicans multidrug efflux pump MDR1.
Overexpression of the multidrug efflux pump MDR1 is one mechanism by which the pathogenic yeast Candida albicans develops resistance to the antifungal drug fluconazole. The constitutive upregulation of MDR1 in fluconazole-resistant, clinical C. albicans isolates is caused by gain-of-function mutations in the zinc cluster transcription factor Mrr1. It has been suggested that Mrr1 activates MDR1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Fungal genetics and biology : FG & B
دوره 46 9 شماره
صفحات -
تاریخ انتشار 2009